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Chaotic scattering on C,, four-disk billiards: Semiclassical and exact quantum theories
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We present the semiclassical and exact quantum theories of a point particle bouncing in C,, four-disk
billiards, which exhibit chaotic scattering in their classical dynamics. The A, sector of the { function in
the semiclassical trace formula is calculated by using cycle expansions with periodic orbits up to period
three in the number of bounces. Its complex poles provide resonances that are in excellent agreement
with the exact quantum resonances in a wide range of wave numbers k. Assemblies of resonances lying
parallel to the real k axis indicate that the distribution of the imaginary parts of the resonances presents
a threshold, and consists of a sequence of small bands below the threshold. The consequences of these
resonances on the dynamical behavior of semiconductor mesoscopic devices are briefly discussed.

PACS number(s): 05.45.+b, 03.65.Sq, 03.40.Kf

I. INTRODUCTION

A growing theoretical attention has been given to the
chaotic scattering of a point particle by hyperbolic (de-
focusing) planar billiards. Its classical theory has been
well developed in terms of mathematical tools such as the
Perron-Frobenius operator, the topological pressure
function, as well as other characteristic quantities of
chaos [1-4]. In systems with more than two hard disks,
it was observed that the unstable orbits which are
trapped between the disks constitute a fractal set with
zero Lebesgue measure in the three-dimensional phase
space. (The three coordinates are, for instance, the posi-
tions x, y, and the angle of the velocity vector with
respect to the x axis.) Studies on the semiclassical and
the full quantum-mechanical counterparts are now con-
stituting a challenging subject in the context of quantum
chaos [2-7].

On the other hand, recent progress in the fabrication of
nanoscale structures has made it possible to measure the
electric conductance, the Hall resistivity, and other quan-
tum transport properties at the so-called crossroad in the
GaAs/Ga,_, Al As interfaces [see Fig. 1(a)] [8]. The
four corners of the crossroad consist of electron depletion
regions which correspond to hard disks in the limit where
the potential at the border of the circuit is very steep.
While some theoretical studies aim at applying
Gutzwiller’s semiclassical trace formula to the crossroad
problem, their issue (e.g., on conductance) is not in good
agreement with the experimental results [8]. This
discrepancy would be due to the serious diffraction effect
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FIG. 1. (a) Crossroad billiard; (b) C,, hard-disk billiard.
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at the leaky regions connected with the straight lead
wires. To capture the fluctuation properties truly attri-
butable to chaotic scattering, one should begin to investi-
gate the semiclassical theory of the four-disk system with
all its attachments discarded so as to suppress effects of
diffraction [see Fig. 1(b)]. The classical study of this sys-
tem has already been started by Gaspard and Alonso [9].

In this paper, we shall develop both the semiclassical
and the exact quantum theories for a point particle scat-
tered by a model system consisting of our identical hard
disks with the C,, symmetry. While the corresponding
studies on the C;, three-disk system were made by
Gaspard and Rice [2], the change of symmetry and the
occurrence of more types of periodic orbits due to the
square geometry will address new open questions.

II. EXACT QUANTUM THEORY

Before entering into the semiclassical theory we shall
briefly describe the method and results within the frame-
work of the exact quantum theory.

Let us suppose that the four disks {d,,d,,d;,d,} are of
unit radius (@ =1) and are surrounded by a large circle B
of radius b which is arbitrary. Denoting the inter-disk
distance by R, we assume 2a <R <<b. The ratio
o =R /a represents the degree of opening: o~2 and
o >>2 correspond respectively to a weakly open scatterer
with a bulky repeller and to a strongly open scatterer
with a filamentary repeller. Moreover, when o >2.5, the
symbolic dynamics controlling the trapped orbits of the
repeller does not demand special pruning rules. The
present study will be concerned with the case o >>2.5
when the corresponding classical dynamics is strongly
and fully chaotic.

Consider an incident particle with energy
E=#k?/2m. The most essential quantity in the scatter-
ing problem is the S matrix which is introduced in the
asymptotic expansion of the wave function in the
angular-momentum representation according to
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At the boundary of {d,,d,,d;,d,}, the wave function

satisfies

\l/k,(rj )=0

with its normal derivatives expressed as

+

n;-V¥(r;)= 3 Aj,expim6;),

m=—o

where j=1,...,4.

(2.2a)

(2.2b)

The unknown quantities {S;.} and { 4,,,} can be ob-
and the expression

tained by substituting (2.1),

(2.2),

J

(2.1)

+Sexp |i kr—l’——%]

’exp( il'p)

f

for the free-particle Green function G(r,r')=—(i/
4)H(V(k|r—r'|) into Green’s theorem which transform
bulk integrals into surface integrals. In particular, the S
matrix is obtained as [2]

S=I—-iCM~'D, 2.3)

M, and D are bi-infinite matrices whose ele-

where C,
ments contain Bessel functions. This matrix equation is
decomposed by using the irreducible represen-
tations of the C,, point group. Noting that A4,,,,= 4),,,
= Ay, = Ay with Ay, = A, _,, for the 4,-represen-

tation, the components of M "'’ are given as follows:

(A4,) Ta Jo(ka) Jo(ka) —
My'' =— |1+42———H (kR )+ ————H,(V2kR
© 2i Hy(ka) olkR) Hy(ka) of )
(4,) ma Jo(ka) 7rm' Jo(ka) —_
M, '=—|4——H_,(k _ (Vv
om' =0 |V (ka) H-m (kR )eos | = H_(ka) 1-m(V2kR)
=Ta |4m " g \4 )
M, 2 Hy(ka) m (KR )cos 4 Hy(ka) H, (V'2kR )cos(mm)
J,(ka) —m' ’
(4,) _ ma m (3m —m')w m’ 3m+m')wr
M, =5 28, 4m ‘Hm_m,(kR)cos——————-H—l) Hm+m.(kR)cos—4—
m(ka) _
—m—) [H,,, mAV2kR )cos(mm)+(—1)"'H,, . ,.(V2kR )cos(mw)] ] , (2.4)
0 . (a) where H,,(z)=H\!(z) is the first Hankel function and
g _f o o Q 9 o o m, m'>0.
E Flaoc®oo®o o, Restricting ourselves to the A4, representation
-0.2 ° o o5 o throughout the present paper, the resonances of the S
L ° " 1 matrix are determined by the zeros of detM 4 (k) in the
P ) ® complex plane of the wave number k. We have examined
04 10 20 the ranges —0.4<Imk <0 with O<Rek <20 and
Re(k) 0<Rek <5 for the ratios g = 3 6 and o =12, respectively.
(b) The size of the matrix M amounts to a dimension of
= or; T -
g ©t 2. % 900 o°° & s © X T g G—c: ° °
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FIG. 2. Exact (O) and semiclassical (X) quantum resonances Re(k)

in the billiard of ratio 0 =6. The semiclassical results are ob-

tained using (a) 6 orbits with periods 1 and 2; (b) 14 orbits with

periods 1, 2, and 3.

FIG. 3. Same as in Fig. 2 but with 0 =12. The semiclassical
results are obtained using the orbits with periods 1, 2, and 3.
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50X 50, for us to obtain well-converged values of its
(scaled) determinant in the aforementioned complex k
domain. The computed quantum resonances are given in
Figs. 2 and 3 for 0 =6 and 12 respectively. These figures
will be used for comparison with the semiclassical results.

ITII. SEMICLASSICAL THEORY

According to Balian and Bloch [10], we can define a
relative density of state D(E) as the difference between
the state densities of the free and of the scattering sys-
tems, both confined in the circle B. The relative density
D(E) is asymptotically independent of the radius of B
and is related to the S matrix according to

s' ) B \E)

dE (3.1)

=1
D(E)=>—tr

Therefore, the density D (E) and the S matrix share the
same poles. D(E) itself is written as D(E)
=—7"'Img(E) with g(E) being the trace of the
difference between the Green functions with and without
the four disks.

In the semiclassical limit, g(E) is expressed as a sum
over periodic orbits, ie., by Gutzwiller’s trace formula

(6:

£
#
2sinh(ru, /2) ’

exp | - rS,(E)+inrL,

T,(E) =
gE)=g+3Z——— 3
4 t r=1

(3.2)

where g, is E independent and is given by the difference
between the Thomas-Fermi state densities with and
without the four disks: g, = —4a’m /(2#%. The prime
periodic orbits are labelled by p while the integer r is the
number of repetitions of each prime orbit. Denoting
by I, the length of the periodic orbit, S,(E)=¢ p-dq
=fikl, and T,(E)=dS,(E)/dE=1,/v are, respec‘t7ively,
the reduced action and the period of p, where v =%k /m
is the velocity. (In the classical dynamics of billiards, we
mention here that it is often convenient to rescale the ve-
locity to a unit value v=1.) L  is the number of col-
lisions of the orbit p with the disks. The stability ex-
ponent u,, is related to the Lyapunov exponent A, and the
stability eigenvalue Ap via u = Tp kp =ln|Ap |. The latter
quantities A, are the eigenvalues of the monodromy ma-
trix m,, i.e., of the linearized Poincaré return map in a
surface of section transverse to the trajectory. The ad-
vantage of the present billiard systems lies in the E in-
dependency of A, due to the constancy of the particle ve-
locity, which greatly simplifies the summation in (3.2).

Using the expansion [2sinh(x /2)]_1=E}°=Oexp[—(%
+j)x], the trace function is written in terms of the
Ruelle £ function as [2]

0

d
g(E)=g,— S ——In¢ (—ik) ,
0 jgo 3E o0+

(3.3a)

with
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, ¢ explikl,) |7
§(1/2)+j(_lk)=l;l 1—=(=1) pm

(3.3b)

As a consequence, the complex poles of the Ruelle §
function yield the resonances of the S matrix.

Because of the C,, symmetry of the system, the § func-
tion can be factorized as {=¢ Alé‘ AZQ‘ Blé' B2§% where the

factors correspond to the irreducible representations A4,
A,, B,, B,, and E, the first four of which are one-
dimensional while the last one is two-dimensional [11].
This factorization further simplifies the treatment of the
product over periodic orbits in (3.3b). We have for in-
stance that §;|1=Hp(1—tp)=1—to—t1 —t,—(tg —tot,
+itg —tot, tt;—tyt,)— - - -, where ¢, is given by

L - .
t,=(—1)"|A, |~ %exp(ikl,) , (3.4)

if we restrict ourselves to the resonances with the longest
lifetimes which are given by the first Ruelle { function
with j=0. In this regard, the A4, representation we are
concerned with in this paper, includes the resonances
with the longest lifetimes which are bordering a “gap”
void of resonance formed just below the real k axis.

Following the symbolic codings by Cvitanovi¢ and
Eckhardt [11], the trajectories of the first 14 periodic or-
bits up to the period 3 in the number of bounces are listed
in Table I. The reflection angles @ and the lengths [/ of
these periodic orbits are used to determine the traces of
the monodromy matrices according to

TABLE 1. Trajectories of the periodic orbits.

0 12 g‘g
period 1 1 1234 g
2 13 ‘(’/g
01 1214 o¥
period2 | 02 1243 gzg
12 12413423 %
001 121232343414 | 1%
002 121343 gzg
011 121434 ;@
iod 012 121323 e
021 124324 &
022 124213 =
112 123 e
122 | 124231342413 | %
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211k 2l K, _
1+ nilfn . 1+ n—1n"n—1 l
cosg,, cosQ, —1
—(— 1)\
trm=(—1)"tr 2%, %,
cosg, CoS@, —1

where «,(=1/a for all n) is the curvature of the disk
where a particle bounces. For the example of the n =3

orbit “022” (see Fig. 4), we find cosp,=1,
cosp,=cosg; =X, [,=Y—a, [,;=R—2aX, and
1;3,=Y—a, with X and Y satisfying
Y=§2R2—20R[X+(1—X2)1/2]+a2}“2 and 2YX(1

—X*)'?—R +a(1—X%)!"?=0. Using A2 —(trm,)A, +1
=0, the stability eigenvalues and finally 7, in (3.4) are ob-
tained. It should be noted that the Bunimovich-Sinai
curvature formula can also be used to obtained the
Lyapunov exponents [2,9].

We have computed & 4, for several values of the ratio

o. The zeros of [§ Al( —ik)] ™! are obtained by searching
for the minima of |£ 4, | 7! in the complex k plane, whose

locations are given in Figs. 2 and 3 in the cases of 0 =6
and 12, respectively. The semiclassical resonances based
on 6 orbits with periods 1 and 2 and those based on 14 or-
bits with periods 1, 2, and 3 are respectively depicted in
Figs. 2(a) and 2(b).

In Fig. 2(b), we observe the following.

@ In a wide window of O<Rek <20 and
—0.4 <Imk <0, a remarkable agreement is obtained be-
tween the locations of the semiclassical and exact
quantum-mechanical resonances. While the semiclassical
resonances have also been obtained by using orbits up to
period 4 [12], no noticeable improvement has been found.
Therefore, the semiclassical theory with orbits up to the
period 3 is extremely effective in reproducing the quan-
tum resonances. Nevertheless, there remain differences
especially for the resonances close to k=0. Recent
works by two of the authors have shown that these
differences can be attributed to diffraction effects and can
be taken into account at the next-to-leading semiclassical
approximations which include # corrections in the
Gutzwiller trace formula (3.2) [13,14].

(ii) The distribution of resonances has a gap below the
real k axis. Comparing with the issue for the C;, three-
disk system with the same value of o [2], the gap in the

FIG. 4. Period-3 orbit “022.”

n—I1n
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21,k
1+—=1 4,

cosQ;

2, 1 R (3.5)
cosQ,

present case is diminished owing to the increase of trap-
ping effect between the four disks (more quantitatively, to
the increase of the Hausdorff and information dimensions
of the corresponding classical fractal repellers [9]). The
semiclassical gap law shows that the resonances obey
Imk, < —xg,, at large wave numbers Rek, — o with the
value x,,,=0.03796 when 0 =6. The resonances close
to k=0 do not satisfy the inequality because these reso-
nances are strongly affected by diffraction effects ex-
plained by the # corrections to the Gutzwiller trace for-
mula [13,14].

(iii) The distribution consists of several quasi periodic
structures parallel to the real k axis. In contrast to the
C,, three-disk system, the distribution of resonances is
here observed to be much more irregular due to the
difference between the length scales ~R and ~V'2R
characterizing the square geometry.

Let us proceed with the resonance spectrum of the
strongly open scatterer with o =12, shown in Fig. 3. The
semiclassical resonances are displayed in the window
0<Rek <10 and —0.4 <Imk <0, but their comparison
with their exact quantum counterparts has been done in
the limited range Rek <5 because of the too large size of

(4,)) . (4,) .
M required to get converged values of detM in
the quantal treatment. Nevertheless, the results (i)-(iii)
are also valid here.

A careful observation of the periodic structures in
Figs. 2(b) and 3 reveals that they are composed of several
oscillating strings which lie parallel to the real k axis and
merge into narrow bands at high energies to split again at
higher energies. To characterize these structures, we
shall now analyze dh/dx the density function of the
imaginary parts (x =—Imk) of the semiclassical reso-
nances near the gap, where A (x) is the cumulative distri-
bution function [15]:

A(x)= lim 1

—————[argf(x +iy,)
<y2—y1)_.w217(y2—y,)[ &/ V2

—argf(x+iy,)] . (3.6)
The function f in (3.6) is the inverse semiclassical § func-
tion of the A, sector: f(x +iy)=§;ll( —ik) with
x=—Imk and y=Rek. We choose the ratio oc=12
where the beating of the oscillating strings is more evi-
dent (see Fig. 3). The density dh /dx per unit Rek is de-
picted in Fig. 5 for increasing sizes of the interval
(y,—y1) used in the average (3.6), with y,(=38) fixed.
[Figure 5(d) includes about 150 resonances.] The density
consists of a sequence of bands with fine structures near
the threshold, which continue to fluctuate as y, increases.
The formation of bands is caused by the bunching of
several oscillating strings parallel to the real k axis. The
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300 30— small peaks near the threshold. Any finite truncation of

« x the inverse § functions should lead to a stable asymptotic
= 200k 4 So00k distribution #(x) when Rek— . However, it seems
4 £ that the asymptotic distribution is reached only at high
values of Rek. On the other hand, there is presently no

1001 1 1001 rigorous result on the existence of this distribution A (x)

F for the quantum-mechanical system. Besides this ques-

e 54 o S tion, our results show that the distribution 4 (x) consider-
x==Im(k) x=-Im(k) ably differs from the prediction of random matrix

@ ©) theories. This difference holds irrespective of the degree

of opening of the scatterer and strongly indicates a

00 —rrrr et 300 —rrret ' ' nonuniversality of the distribution function near the

dh(x)/dx
n
8
T
dh(x)/dx
g
=2
1

-

o

\=]
T

0 x=—Im(k) 0.1 0]

(©

FIG. 5. In the billiard with the ratio o =12, density function
dh /dx of the imaginary parts of the semiclassical resonances,
x = —Imk, obtained with y, =38, and (a) y, =20; (b) y,=30; (c)
y,=40; (d) y,=50.

location of a threshold (at x,,,=0.0509) in the distribu-
tion is extremely stable, ensuring the stability of the reso-
nance gap in the semi-infinite range Rek > 8. We should
note that, for the separable two-disk billiards [13,16], we
have only a single discrete spectrum because of the regu-
lar arrangement of resonances parallel to the real k axis
at large values of Rek:dh/dx=38(x—x,,) with
xgap=ln|Ap|/ (21,). On the other hand, random matrix
theories suggest a distribution with the density
dh /dx « x"/Y " lexp(—x /2) for v open channel systems
and dimensionless x’s. This density is the derivative of
the generalized Porter-Thomas cumulative distribution
function [17], showing a monotonic growth starting from
Imk =0 for v>2. Because the density of the four-disk
scatterer in Fig. 5 shows a behavior which is more com-
plex than in these two special limits, the result of Fig. 5
demonstrates nonuniversality features in the distribution
of x =—1Imk.

IV. DISCUSSION AND CONCLUSIONS

For C,, four-disk systems, we showed that the exact
quantum resonances can be nicely reproduced by the
semiclassical theory using the cycle expansion of the
Ruelle § function with a finite set of periodic orbits up to
period 3 in the number of bounces. Small differences
remaining between the quantum and the semiclassical
resonances may be attributed to higher-order # correc-
tions which can be incorporated in the periodic-orbit
quantization as shown recently in Refs. [13,14].

Near the resonance gap, the statistical distribution per
unit Rek of the imaginary parts of the semiclassical reso-
nances turns out to consist of a sequence of bands with

threshold.

The present theory may also be a vehicle for studies on
more complicated open systems like the crossroad, where
the effect of diffraction should be incorporated. Indeed,
the classical repeller of the crossroad billiard differs from
the one of the four-disk billiard at the level of the period-
ic orbit “12”” of Table I (see Fig. 1). The periodic orbit
“12” is bouncing just at the matching points between the
straight lead wires and the circular corners. A recent
work [18] has shown that the contribution of such
periodic orbits bouncing at discontinuities of the border
of the billiard needs to be modified due to special
diffraction effects. Such modifications may lead to quan-
titative differences in the distribution of the resonances
between the crossroad and the four-disk billiards but our
study indicates that both billiards should share the same
qualitative properties. We hope to report on this issue in
the future.

To conclude, we mention that the resonances studies in
the present paper can provide information on the dynam-
ical behavior of a semiconductor mesoscopic device like
the crossroad. The reaction time of the device may be es-
timated from the size of the aforementioned gap in the
distribution of the resonances. Indeed, according to
Schrodinger’s equation applied to scattering systems, the
time evolution of an electronic wave packet is given by a
linear  superposition of damped exponentials,
exp(ImE ¢t /%), controlled by the imaginary parts of the
complex energies of the resonances. In the present sys-
tem, we showed that the imaginary parts of the wave
numbers are bounded by the value of the gap according
to Imk, < —x,,,. Using the relation between energy and
wave number, we infer that the probability for the elec-
tron to remain in the scatterer decays like exp(—1 /7).
The upper bound on the lifetimes is given by
Teap— 1 /(20px,,,) in terms of the semiclassical gap and
the Fermi velocity of the electron gas. Since the gap is
related to the Lyapunov exponents of the periodic orbits,
our analysis shows how the reaction time of the device
depend on the geometry of the system:

R
8P yeIn(R /a) ’

which is valid in the regime kR, ka >>1 where diffraction
effects can be neglected. Therefore, we see that the shor-
test reaction times are obtained for the smallest values of
the corner radius a, assuming a fixed value for the width
R of the lead wires. For GaAs/Ga,_, Al, As heterojunc-
tions, the effective mass of the electrons is m =0.067m,

4.1)
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and an electron density of n, =3X 10! cm™? can be ob-

tained so that the Fermi velocity would then take the
value vp=#(27n;)""2/m=2.4X10° m/s [8]. For a
nanometric circuit of size R =100 nm, the time unit is
therefore of R /vy =0.4X107!2 5 so that the lifetimes of
the resonances are in the subpicosecond domain [19]. We
suggest that the dynamical behavior of such devices
could be probed by femtosecond laser experiments.
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